The Behavior of Nitrogen Oxides in the N₂H₄-NO-O₂ Reaction

SHIGERU AZUHATA, HIDETOSHI AKIMOTO, and YUKIO HISHINUMA

Hitachi Research Laboratory, Hitachi, Ltd., Hitachi-shi, Ibaraki-ken, 319-12 Japan.

INTRODUCTION

It has been discovered that NH₃ selectively reduces NO in the presence of a large excess of O₂ over the temperature range of 800 to 1,050°C (Lyon, 1976; Lyon and Benn, 1979). It has also been found that H₂O₂ promotes the NH₃–NO reaction and initiates it at about 500°C (Azuhata et al., 1981, 1982). It is generally accepted that the selective reduction of NO with NH₃ is attributed to the high reactivity of NO with NH₂ and NH radicals, produced during the decomposition of NH₃, and the production of these radicals may be the key technology to reduce NO. Based on this philosophy, much effort has been devoted to finding more effective reducing agents than NH₃ and/or additives that would promote the NH₃-NO reaction for the purpose of developing an NOx removal process from a combustion exhaust gas.

The main objective of this work was to determine if an ammonia derivative, N₂H₄, could reduce NO in the presence of a large excess of oxygen. While a significant number of experiments already has been performed on the decomposition of N₂H₄ (Diesen, 1963; Michel el at., 1965; Meyer et al., 1969; Gehring et al., 1979), little information is available to access the applicability of N₂H₄ to an NO reduction process.

EXPERIMENTAL PROCEDURE

The experimental equipment and procedure were basically the same as those previously employed to study the reaction of NH_3 – $NO-H_2O_2$ (Azuhata et al., 1982). The main change to the procedure in the present work was that, instead of H_2O_2 , a water solution of N_2H_4 was sprayed to fine droplets by a carrier stream of N_2 . The sprayed liquid N_2H_4 was vaporized at $120^{\circ}C$ and then injected into an electrically heated quartz tube reactor 1.3 m long and 15, 20, and 40 mm I.D.

The flow rate of each reactant was measured with calibrated rotameters and the total flow rate was set at $100\,\mathrm{mL/s}$ (at $0^\circ\mathrm{C}$ and at atmospheric pressure). The content of N_2H_4 in a gas mixture was controlled by varying the concentration of N_2H_4 solution, and checked by the iodometric titration of hydrazinium sulfate, which was obtained by bubbling the sample gas through a dilute sulfuric acid. A Yanagimoto ECL 308 chemiluminescence NO/NOx analyzer was used to monitor NO and NO₂. The composition of reactant mixture was 0–1,000 ppm N_2H_4 , 0–200 ppm NO, 0–15% O_2 , and O_2 as carrier.

EXPERIMENTAL RESULTS AND DISCUSSION

The influence of the reaction temperature on the N_2H_4 -NO reaction was studied with and without O_2 . Figure 1 shows the relation between reaction temperature and the concentration change of NO, NO₂, and NOx (NO + NO₂). The decrease in NO was observed above 500°C, in the absence of O_2 . This result was easily predictable based on the kinetic data of the thermal decomposition of N_2H_4 (Eberstein and Glassman, 1965), and NO was thought to be reduced to N_2 and H_2O by N_2H_4 .

In contrast, the presence of O2 prohibited the reduction of NOx.

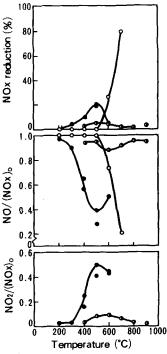


Figure 1. Variations of NOx reduction, NO, and NO₂ with reaction temperature in the N₂H₄—NO—O₂ reaction. Gas mixtures: 200 ppm N₂H₄, 200 ppm NOx (mostly NO but 0-5 ppm NO₂ as impurity), 0 ~ 15 % O₂, balance N₂. O: O₂ absent; O: 3 % O₂; ●: 15 % O₂.

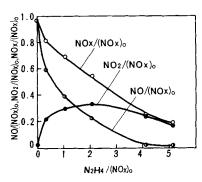


Figure 2. Relation between variations of NO, NO₂, and NOx and initial molar ratio of N₂H₄ with NOx. Gas mixtures: 0 \sim 1,020 ppm N₂H₄, 200 ppm NOx (195 ppm NO and 5 ppm NO₂), 15 % O₂, balance N₂. Temp., 500 $^{\circ}$ C; reaction time, 0.4 s.

When 3% O_2 was added to the mixture of N_2H_4 and NO, only a slight change in NO and NO_2 was observed. By increasing the O_2 concentration, the characteristic of the N_2H_4 –NO– O_2 reaction became clearer. Ther marked result was the appearance of a large amount of NO_2 . Despite the large decrease in NO, NO_2 reduction was very low because of the formation of NO_2 . The NO_2 formation showed a large dependence on the O_2 concentration. About five times as much NO_2 was observed in the experiment with the 15% O_2 present as in that with 3% O_2 .

If NH₂ of NH radicals were to be produced in the N₂H₄-NO-O₂ reaction, a part of NO would have to be converted to N₂. NH₂ was already proved to be highly reactive with NO, and the reduction of NO with NH₃ was well explained by assuming that NH₂ produced from NH₃ would react with NO in the presence of a large

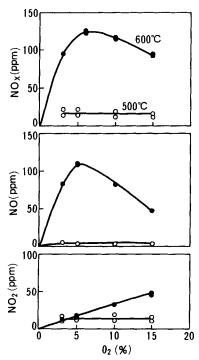


Figure 3. Formation of NO and NO $_2$ in the N $_2$ H $_4$ ---O $_2$ reaction. Gas mixtures: 1,000 ppm N $_2$ H $_4$, 3-5 % O $_2$ balance N $_2$. Temp., 500 and 600 °C; reaction time, 0.4 s.

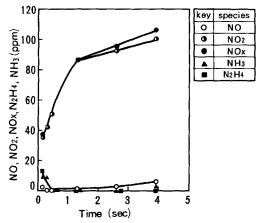


Figure 4. Variations of reactants with time. Gas mixture: 500 ppm N_2H_4 , 100 ppm NOx (95 ppm NO and 5 ppm NO_2), 15 % O_2 , balance N_2 . Temp., 500 °C.

excess of O_2 (Lyon and Benn, 1978; Azuhata et al., 1981). Therefore, the oxidation of N_2H_4 with O_2 is thought to produce only a little amount of NH_2 or some intermediates that would react more rapidly with NH_2 than NO.

Figure 2 shows the influence of initial molar ratio of N_2H_4 to NOx on the concentration change of nitrogen oxides. Experiments were conducted at 500°C with 15% O_2 present. The increase in N_2H_4 caused the decrease in NOx and NO, and the NO₂ produced exhibited a weak dependence on N_2H_4 .

In previous papers, little has been mentioned about the formation of NO_2 or about the reaction mechanism that would predict NO^2 formation. There are three plausible reaction pathways that will predict the NO_2 formation. The first possibility is the $NO-O_2$ reaction. But this reaction can be ruled out, because it was experimentally verified that the direct oxidation of NO with O_2 did not take place under the experimental conditions of this study. The second possibility is the oxidation of N_2H_4 with O_2 , and the third is the oxidation of NO with some intermediates produced from the oxidation of N_2H_4 with O_2 .

In order to confirm the relative importance of these two possible pathways, NO and NO₂ produced in the N₂H₄–O₂ reaction were measured. Figure 3 shows the formation of NO and NO₂ obtained when mixtures of 1,000 ppm N₂H₄, 0–15% O₂, and N₂ as carrier were heated to 500 to 600°C. Both NO and NO₂ were detected due to the oxidation of N₂H₄ with O₂. A peak NO was observed around 5% O₂, and NO₂ increased proportionally with O₂, although the sum of NO and NO₂ showed only a slight dependence on O₂. The experimental results in Figure 3 indicated that N₂H₄ was converted to NO₂, but the amount of NO₂ produced was 5% of N₂H₄ at most at 600°C and below 2% at 500°C. These values were far less than those obtained in the reaction of N₂H₄–NO–O₂ shown in Figures 1 and 2. These experimental results would support the assumption that N₂H₄ cannot be the main source of NO₂, and NO₂ must be chiefly produced from NO.

Figure 4 shows the variations of N_2H_4 , NO, NO₂, and NH₃ with the reaction time. NO disappeared very rapidly, as did N_2H_4 . A trace of NH₃, which was the product of N_2H_4 decomposition, was observed within 0.2 s. In contrast to these reactants, the formation of NO₂ occurred very slowly and continued for more than 1 s in the region where no N_2H_4 , NH₃, and NO could be detected.

These results suggest the assumption that the NO₂ formation in the N₂H₄-NO-O₂ reaction takes place in two distinct steps. The first rapid reaction of N₂H₄ with NO proceeds in the presence of O₂ and yields a relatively stable species, which forms NO₂. This reaction is followed by a slower reaction, which produced NO₂.

Literature Cited

- Azuhata, S., et al., "A Study of the Kinetics of the NH3-No-O2-H2O2 Re-'18th Int. Symp. on Combustion, Combustion Inst., Pittsburgh,
- Azuhata, S., H. Akimoto, and Y. Hishinuma, "Effect of H2O2 on Homogeneous Gas Phase NO Reduction Reaction with NH3," AIChE J., 28, 7 (1982).
- Diesen, R. W., "Mass Spectral Studies of Kinetics Behind Shock Waves. II. Thermal Decomposition of Hydrazine," J. Chem. Phys., 39, 2121
- Eberstein, I. J., and Glassman, "The Gas-Phase Decomposition of Hydrazine and Its Methyl Derivatives," 10th Int. Symp. on Combustion, Combustion Inst., Pittsburgh, 365 (1965).
- Gehring, M., et al., "Direct Studies of Some Elementary Steps for the Formation and Destruction on Nitric Oxide in the H-N-O System," 14th Int. Symp. on Combustion, Combustion Inst., Pittsburgh, 99 (1974), Lyon, R. K., "The NH₃-NO-O₂ Reactions," Int. J. Chem. Kins, 8, 315

- -, and Benn, D., "Kinetics of the NO-NH3-O2 Reaction," 17th Int. Symp. on Combustion, The Combustion Inst., Pittsburgh, 601 (1978).
- McHale, E. T., B. E. Knox, and Palmer, H. B. "Determination of the Decomposition Kinetics of Hydrazine Using a Single-Pulse Shock Tube, 10th Int. Symp. on Combustion, Combustion Inst., Pittsburgh, 341 (1965).
- Meyer, E., et al., "Investigation of N2H4 and H2O2 Decomposition in Low and High Pressure Shock Waves," 12th Int. Symp. on Combustion, Combustion Inst., Pittsburgh, 345 (1969). Michel, K. W., and H. G. Wagner, "The Pyrolysis and Oxidation of Hy-
- drazine Behind Shock Waves," 10th Int. Symp. on Combustion, Pittsburgh, 353 (1965).
- Sawyer, R. F., and I. Glassman, "Gas Phase Reactions Hydrazine with Nitrogen Dioxide, Nitric Oxide, and Oxygen," 11th Int. Symp. on Combustion, Combustion Inst., Pittsburgh, 861 (1967).

Manuscript received June 22, 1984 and accepted July 10.